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Abstract

Object management in software environments can be enhanced by provid-
ing programmable object management systems. Key requirements for object
managers include typing, persistence, constraints, event monitoring, sharing,
activity, derived data, support for foreign tools, query, and programmable im-
plementations. We define a model — Aspen — which uses the notion of pro-
grammable relations as a unifying mechanism for meeting many of these require-
ments. We describe a language — APPL /A — which is a particular realization
of Aspen. APPL/A provides a vehicle for experimentation with programmable
object management systems. APPL/A has been used to support the develop-
ment of a requirements specification system. Our experiences from the use of
APPL/A are being applied to adapt the language, refine the model, and in gen-

eral enhance our understanding of the basic requirements for software object
management.






1 Introduction

Over the past several years, software environments have come to be viewed less col-
lections of large monolithic tools and more as sets of smaller tool fragments that are
coordinated by development processes whose job is to create and manage structured
collections of software objects stored in a central repository [32,23,9,13,5,7]. In re-
cent years considerable attention has been focused on the nature of that ob ject store
and the objects which must populate it. These objects range from source text and
executable code, to test cases, documentation, requirements, and designs.

A variety of disciplines and systems have been proposed as the basis for effective
software object management. These range from simplistic attempts to use turnkey
relational databases [24,33,8], to more sophisticated approaches that treat the soft-
ware objects as instances of types which are organized into potentially elaborate and
complex type hierarchies [42,20]. These efforts have met with varying degrees of suc-
cess, and as a result there is currently a great deal of research interest in software
object management.

We believe that currently there is insufficient understanding of the basic require-
ments for software object management and consequently a great deal of uncertainty
about how to design and implement software object management systems. In eval-
uating earlier systems we were struck by the fact that most failed to place sufficient
emphasis on the management of relationships among software objects. As relation-
ship management strikes us as one of the key tasks of an object manager, and as other
projects seem to be addressing other tasks, we have focused on relationship manage-
ment and related issues such as constraint maintenance, derived data, inferencing,
and implementation independence.

Moreover, we believe that no single approach to software object management is
generally appropriate: the needs for object management vary from environment to
environment, project to project, and user to user, and they evolve over time. We
believe that the best way to accommodate the uncertainty and change in software
object management systems is to design them as programmable components of envi-
ronments. For this reason, we are investigating concepts and languages appropriate
to this task.

Our approach is based on the iterative development of research prototypes, each
of which is designed to incrementally elucidate requirements for software ob ject man-
agement while also shedding light on design and implementation issues. In particular,
having identified some key requirements, we have defined a model — Aspen — which
formulates general principles for programmable software object management [17]. We
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have also developed a language ~ APPL/A - as one implementation of this model
[39]. APPL/A is intended as an vehicle for experimentation with programmable
object management systems. Both Aspen and APPL/A emphasize the importance
of relationships among objects and use the concept of “relation” to integrate other
object-management capabilities. We have used APPL /A to support the development
of user-level software tools. This has given us experience that we are applying to
adapt the language, refine the model, and in general enhance our understanding of
the basic requirements for software object management.

This paper describes our progress in iterating through the prototyping activity.
First, we discuss the general characteristics which seem to describe the requirements
for an object store. Second, we describe the concepts of Aspen, and, in particular, the
role of relations. Third, we describe our experimental language, APPL/A, and our
experiments with systems implemented using it. Finally, we present our conclusions
and the directions which they indicate for subsequent iterations.

2 Object Manager Requirements

In order to initiate the cycle of experimentation, we needed to define an initial set of
requirements for object management. In this section, we briefly review the most im-
portant of those requirements. This list is taken from published lists [5,10] combined
with initial experiences in managing software products [25]. Some possible require-
ments have intentionally been ommitted from this list because we do not believe they
are fundamental. Evidence from the configuration management community [41] sug-
gests that versioning, for example, must be built over an object manager to support
semantic specification of versions.

2.1 Data Model

By “data model” we mean the general way in which objects are represented and
classified. We begin with the assumption that the software product consists of objects;
the data model must accommodate these as well as other objects that will occur in
an environment. Objects have identities, by which they can be referenced, a state,
which represents its value and can be operationally accessed, and a type. A type is
usually defined in terms of a set of operations and a set of values. The operations are
applicable to all objects of the type, and the values can be taken on by any object of
the type.



Typing is useful because it imposes some organization on objects, provides a way
to summarize their properties, and serves as a basis for their interpretation and use.
Because of these benefits it is often useful to strictly enforce the typing of objects.
However, in a software environment there are circumstances in which it is expedient (if
not necessary) to violate the typing of objects, for example, to treat an object of one
type as if it were of another, to access the implementation of an object, or to modify
the definition of a type. Consequently, mechanisms by which typing constraints can be
circumvented are also important. In order to avoid a breakdown of the typing system,
however, these mechanisms should be well integrated, explicit, and systematic, and
their use should be controlled insofar as possible.

Typing systems typically provide a set of predefined “base” types plus type con-
structors that enable new types to be defined from existing types. In a software
environment the base types and type constructors should be appropriate for software
products and processes. Aggregations of objects and relationships among objects
seem particularly important.

The set of types in an environment must be easily extensible. The types required
for a software product vary from project to project and evolve over time within a
project. The extensibility of a type system is facilitated by a rich set of base types
and type constructors plus mechanisms that allow type definitions to be reused.

2.2 Persistence

The persistence of objects is a measure of their lifetime. In software environments
the persistence of objects is usefully measured relative to the scopes in which they
are used. A range of persistence of objects can be distinguished [4]. Of particular
importance for software development is the persistence of objects beyond the lifetimes
of processes that use them.

Conventional programming languages are concerned primarily with objects that
persist within a single program execution. They commonly use external systems,
such as files or databases, for storage of more persistent objects. However, these
systems are limited in some ways, their use adds syntactic and semantic complexity
to a language, and it weakens the programmer’s control over stored objects.

So called “persistent programming languages” provide better integration of persis-
tence with the language than is available through file systems [4,27,35,39,28]. Many
of them enable persistent objects to be treated more like “transient” objects whose
lifetimes are limited to a single program execution. They also provide type safety;
that is, they preserve typing information for objects that persist between programs.
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Otherwise, these languages differ widely in their approaches, and there is no consen-
sus as to which of the approaches is best. In any case, programmable control over the
persistence of objects is particularly important in a language for the programming of
object management systems.

2.3 Constraints and Inconsistency

Constraints are conventionally regarded as predicates on data that must be satisfied
whenever the data are generally accessible. Constraints in this sense are useful in
many contexts in software environments. They may be applied to individual ob jects,
aggregates of objects, and relationships among objects.

The conventional view of constraints is too restrictive for software processes, how-
ever. It assumes that constraints can be specified in advance of processing and that
constraint evaluation and maintenance are not prohibitively costly. However, during
software development not all constraints are known in advance, and constraint pro-
cessing may be long and complex. Although there is a high potential for violation of
constraints in a software environment it may not be practical or necessary to enforce
all constraints at all times.

If constraints are not always enforced then an environment may be in an inconsis-
tent state. While inconsistency is intolerable in some contexts it may be tolerable in
others. If inconsistency can be accommodated then it may be easier to add constraints
dynamically and the extent to which processes are blocked by constraint maintenance
may be reduced. Thus software environments should facilitate the constructive man-
agement of inconsistency rather than simply prohibiting it.

2.4 Event Monitoring

The execution of many processes in a software environment will be conditional on
events that are generated by other processes. An event can be defined as an arbitrary
signal that is generated a some selected point in a process. Similar concepts include
demons, triggers, and event monitoring. In conventional languages the conditional
process must be invoked directly by the process that generates the event. This ap-
proach is useful in some cases but it is limited in that the invoking process must know
about all of the processes interested in the events it generates.

In order to avoid this knowledge of other processes, a reactive mechanism can used.
Such a mechanism enables processes to respond independently and unobtrusively to
events in the environment. This approach is useful because the process that generates
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an event does not need to know about the processes that respond to that event;
thus it enhances the extendibility of environments. Reactive processes can be used
for many purposes, including performance measurement, user-interface management,
constraint maintenance, object derivation, and general monitoring of resource usage.

2.5 Cooperative Sharing

Except for small projects, the development of software is inherently a cooperative
activity. Many people and processes are involved in the design, construction, and
testing of software. Thus, any software environment must support sharing of data
among multiple users.

There are several interrelated issues surrounding shared access to data. One prob-
lem is concurrency control: ensuring that two or more processes that simultaneously
access an object do not interfere with one another. In particular, no process should
find an object in an inconsistent state as a consequence of concurrent access by another
process. The database concepts of transaction, atomicity, and logging are examples
of solutions to concurrency control.

Another issue is control of visibility of shared objects. Objects that are shared
must be visible to the sharing processes. This implies that the objects and processes
must exist in some encompassing context in which the sharing occurs. A related issue
is control of persistence (see Section 2.2). If objects are to be shared in sequence
by processes then the objects must be persist between accesses in some scope within
which the processes execute. The visibility and persistence of objects with respect to
separate threads of control within a single process are typically governed by definition
in a language. The visibility and persistence of objects with respect to multiple
separate processes within a larger system, such as an operating system or database,
are typically governed by the rules of that system and are beyond the control of
programming languages. The visibility and persistence of shared objects are central
concerns of object management systems for software environments.

2.6 Other Capabilities

There are several additional capabilities which we believe place important require-
ments on object management systems for software environments, These include:

o Active Objects: We believe that not all objects should be regarded as passive
entities upon which processes act. Rather, some objects should encapsulate



independent processes as well as state. In this way much of the processing that
relates to an object can be associated directly with the object instead of being
dispersed through application and system code. The activity of objects can be
used to dynamically and independently manitain constraints, compute values,
manage storage, and invoke other processes in general.

Derived Objects: Software development can be viewed as the derivation of a
product from requirements, and derived objects of many kinds are important
any software environment. One of the purposes of a software environment is to
support the derivation of objects. This should include support for the specifi-
cation and maintenance of derivation relationships and control over derivation
processes and derived objects.

“Foreign” Tools and Objects: Software environments in general are not
isolated systems. An environment may benefit from tools and ob jects developed
in and imported from other environments. A problem with the use of such tools
and objects, though, is that they may be based on different abstractions and
implementations. To accommodate foreign tools and objects most effectively an
object management system must be able to incorporate and take advantage of
alternative abstractions and implementations while at the same time isolating
the overall environment from potentially disruptive differences.

Programmable Implementations: Many software environments provide fixed
implementations for various aspects of object management. These may include
the storage system, computation and caching strategy for derived objects, and
inferencing mechanisms. While these may suffice for particular circumstances,
we believe that fixed implementations are inadequate in general. A language
for the programming of object management systems should instead allow pro-
grammable implementations for storage and related capabilities. This would
promote the adaptability, portability, and extensibility of object management
systems, and it would also enable an implementation to take advantage of ex-
isting support services where those can be of use.

Query: The ability to query the object manager is often neglected in existing
environments. Yet from databases, we know that set-oriented queries are a ma-
jor source of efficiency because they provide opportunities for optimization that
navigational queries cannot provide. In addition, an ad-hoc query mechanism
is useful to project managers because it allows them to browse the system and



efficiently examine the status of the project. Managers do not want to write
new programs for every question they might ask. This would seriously impede
their ability to manage even moderate scale projects.

The capabilities outlined in this section do not comprise an exhaustive list of re-
quirements for object management in software environments. Nevertheless, these
capabilities should provide an effective basis for addressing other requirements, for
example, configuration management, version control, and administrative support.

3 Active Relations as an Organizing Principle

Aspen is not an actual language; rather it is a set of concepts that must be made
concrete in some actual language. An analogy may be drawn from operating systems.
The concept of a “monitor” [18] defines an approach to designing operating systems,
but it must still be embodied in a language such as Concurrent Pascal [6] before it can
be used. Similarly, Aspen provides a set of concepts for languages that are intended
to be used to construct object managers for software environments. Section 4 shows
these abstract concepts made concrete in the context of the programming language
APPL/A.

The principal tenet of Aspen is that relations are a fundamental concept for soft-
ware object management. We believe that this approach distinguishes Aspen. With
few exceptions [34,19], relations have been deprecated because of efficiency problems
and problems with the use of flat relations [24,33,8]. We believe that the Aspen
approach will avoid these problems without sacrificing the benefits of a relational
approach.

It is important to note what our relations are not; they are not the flat relations
used in traditional relational databases. Our approach combines relations with com-
posite objects to provide the capabilities missing from simple relations. We also differ
from Entity-Relationship models such as PCTE [14] and CAIS (1] in that we associate
information about the semantics and implementations of the objects and processes
with the relations rather than the objects.

Our justification for using relations comes from the observation that much of the
difficulty of dealing with software products derives from the magnitude and complex-
ity of the relationships among their constituent objects. The variety of these relations
is poorly understood and is a major source of difficulty in developing and maintaining
software products. A successful software engineering environment must be capable
of managing not only objects but also the complex interrelationships among them.
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Moreover, we believe that management of relations is facilitated if the relations are
made explicit and are themselves raised to the status of ob jects.

Aspen does not yet address all of the requirements of Section 2. The key require-
ments that we have chosen to focus on initially are activity, constraints, monitoring,
queries, derived data, and programmable implementations. It addresses persistence
through the use of relations as persistent stores. It addresses typing to the extent
that relations are part of the type system. Otherwise it assumes the existence of a
pre-existing type system.

3.1 The Role of Types and Objects in Aspen
Notions of object and type have been well developed in programming languages and
databases (2,15,22,16]. Since the world to be modeled consists of software objects, ap-
proaches from object-oriented languages seem especially appropriate to this domain,
and so we have adopted the following principles as part of Aspen.

Each software object is unique and distinguishable and is an instance of an object
type. A type characterizes its instances by restricting the set of operations that
reference those instances. The operations define the structure of the state of objects
belonging to the type, and through these operations the state of an object can be
examined and modified. The “typing” of objects is “strong” in that an object can
only be manipulated in terms of the operations associated with the type to which
it belongs. All types are organized into a comprehensive type system. This system
comprises some number of predefined types plus mechanisms for the definition of new
types from existing types.

3.2 Relations

The concept of relations used in this model is is based on the mathematical definition
of a relation as a subset of the Cartesian product of one or more domains (i.e. object
types). As such, it is more general than the notion of relation as defined in most
relational database systems. Those systems typically limit the attributes to non-
structured types such as integers and strings. Our relations have no such restriction;
they may include complex objects and even other relations. Additionally, our relations
differ from those of conventional relational systems in terms of operations, semantics,
and the range of available implementations.

Each occurrence of a domain in the cross product is known as an attribute of the
relation; these attributes are both ordered and named. The elements in a relation



are known as n-tuples (for a relation over n attributes) or simply tuples. Tuples are
unordered within a relation. Each tuple comprises an ordered list of values, one for
each attribute; each value belongs to the type of the corresponding attribute and is
identified within the tuple by reference to that attribute. Our relations are multi-sets,
so it is possible to have two tuples with identical sets of values for all attributes.

The operations inherently associated with relations include create and destroy (for
relations) and insert, update, delete, and selective-retrieve (for tuples in relations).
More powerful operations such as those of the relational algebra can be programmed
in terms of the basic operations. However, it is also possible to restrict the basic
operations associated with a relation to a proper subset of those listed above (and
thereby also restrict the additional operations that can be programmed from them).
A restricted set of operations can be used, for example, to define ‘views’ on which the
ability to retrieve or update data is limited.

3.3 Active Relations

While we believe that a relational interface is appropriate for users who wish to access
software objects, we also believe that the semantics and implementation of relations
should be programmed by their creators and that few restrictions should be placed on
the complexity of these programs. This allows relations to serve as abstract interfaces
to existing data structures, to trigger the execution of software tools, to implement
choices about how and whether various relations are to be stored, and to determine
what kinds of evaluation strategies (lazy versus eager, cached versus uncached) should
be pursued. Indeed, relations seem to provide a unifying mechanism capable of sup-
porting all the requirements for software object management. We will use the term
“active relation” for such programmable relations. The term “active” refers to the
fact that we expect the programs associated with relations to act concurrently and
that processes associated with the relations will contribute to this concurrency. We
feel that concurrent activity is critical in addressing the requirements enumerated in
Section 2.

Active relations may be contrasted with the capabilities of a traditional relational
database in which relations are passive data structures and in which the storage,
indexing, and accessing mechanisms for relations are limited to a few fixed, imple-
mentations [37]. This is too limiting for most software engineering applications such
as the creation of a software environment, where the choice of implementations must
evolve over time to meet performance criteria or to incorporate externally developed
software tools.
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3.4 Common Relation Semantics

Aspen relations are programmed in the sense that the operations on relations, i.e.
insert, delete, update, and retrieve, are defined by programs provided by the creator
of the relation. In practice, this degree of freedom must be constrained in order
to be tractable. Many of the relations in Aspen will share common semantics. It is
expected that these semantics will be embedded in programs which will be attached to
any relation that desires to use those semantics. We expect any particular realization
of Aspen to provide some means of combining programs (e.g., inheritance) to provide
the required semantics for any specific relation. Below, we show how some typically
desired relation implementations can be programmed.

3.4.1 Extensional Data

Extensional data is the conventional data that is physically stored in some persistent
medium. Most relational systems provide this class of data. A programmable system
may provide extensional data by programming the insert operation to physically store

the inserted data into some form of low-level persistent store such as a file system or
a data base [38,21].

3.4.2 Derived Data

Derived data is information that is not physically stored; rather it is computed as
needed from other data. This may be simulated by programming the retrieve operator
on a relation to compute the derived values at the point when the data is requested.
A number of storage and evaluation strategies can be used around derived data:

Caching It is possible to cache derived data, which means that once they is com-

puted, it is saved in persistent storage as long as the data from which it was
derived is not altered.

Eager versus Lazy Evaluation If derived data are cached and the data from which
it is derived is altered, the derivation could be computed immediately, or it
can be delayed to when the derived data is retrieved. Immediate computation
1s often termed “eager” evaluation and delayed computation is called “lazy”
evaluation.

Any of these strategies can be incorporated using programmable relations.
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4 APPL/A

APPL/A [39] is an extension to Ada based on the principles of Aspen. APPL/A
supplements Ada with a relation unit, a tuple type, and related control constructs
including a reactive mechanism, the upon statement. Relations provide persistent
storage of Ada objects. APPL/A is intended to be used as a prototype for experi-
mentation in developing systems based on these features.

The following subsections outline the principle features that APPL/A adds to
Ada. An example of an APPL/A relation specification appears at the end of this
section.

4.1 Relation Units

APPL/A defines a relation library unit. A relation unit has a specification and a body.
The specification defines the specific logical properties of an abstract data type that
is generally a multiset of tuples. The body provides a programmed implementation
for those properties in accordance with the definition of the language. Like tasks,
relations represent parallel threads of execution in a program; thus relations are active.
Also like tasks, relations can be used to define both types and instances. All relation
nstances must provide for the persistent storage of tuples up to the lifetime of the
relation type definition.

4.2 Relation Specifications

A relation specification includes
® An external storage specification.

* A tuple type declaration, which defines the type of tuple abstractly stored in
the relation.

Relation entry declarations, which represent the operations on the relation.

Computational dependencies, which define the ways in which attribute values
are computed.

o Constraint specifications, which restrict the tuples stored in the relation.

Each of these is discussed in a following subsection.
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4.3 Relation Bodies

The general syntactic and semantic properties of relation bodies are defined by
APPL/A, but the particular implementation of those properties is not defined. Thus
APPL/A relations have programmable implementations.

Syntactically, relation bodies are similar to task bodies. To support the semantics
of relations the body must

o Implement operations on the relation, as indicated by specified entries, in ac-
cordance with their defined semantics.

o Implement the computation of attribute values as indicated by specified com-
putational dependencies.

» Enforce specified constraints on attribute values and tuples.

e Provide persistent abstract storage for tuples up to the lifetime of the type
definition for the relation.

However, the body of the relation is not constrained with respect to storage systems,
computation and caching strategies, inferencing for constraint maintenance or other
purposes, or other activities in general.

We believe that the semantic restrictions on relation implementations support an
especially useful abstraction. The lack of other constraints on implementations facili-
tates prototyping, evolution, adaptation, and extension of systems. This flexibility is
acquired at the cost of programming the implementations, but this programming can
be simplified by mechanisms, such as Ada generic units, that enable implementations
to be reused, and by tools which can automate much of the work.

4.4 Tuples

APPL/A tuple types are syntactically similar to Ada record types. The components
of a tuple type are known as attributes; each attribute has a mo de, which is one of
In, in out, or out. Tuples are abstractly stored in and are retrievable from relations.
Values for attributes of mode in must be given by the user; values for attributes of
mode out are computed automatically in the relation; values for attributes of mode
In out may be given by the user but then may be replaced by values computed in the
relation. Tuples retrieved from a relation receive copies of values abstractly stored
in the relation; to help maintain consistency between those tuples and the relation
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values may not be assigned individually to attributes outside of the body of a relation.
Otherwise whole tuples may be assigned and compared for equality.

4.5 Relation Entries

Operations on relations are effected through entries that are syntactically similar to
task entries. Relation entries are restricted to find and selected plus any subset of
insert, update, and delete.

The insert entry takes values for those attributes of mode in and in out and
effects the logical storage of a tuple with those values. The update entry effects
the logical update-in-place of attributes of mode in and in out of selected tuples in
the relation. The delete entry effects the logical deletion of selected tuples in the
relation.

The find and selected entries are used to selectively retrieve tuples from a relation
and to trigger operations by that retrieval. These entries are not directly callable from
user programs; instead they are used to implement iteration over relations, which is
described below. When a tuple is retrieved it includes not only the attribute values
given by a user but also any attribute values computed automatically in the relation.

4.6 Computational Dependencies and Constraints

Attributes of APPL/A relations can take on computed values. These attributes must
have mode out or in out. The way in which an attribute value is to be computed
can be indicated by a computational dependency specification. These specifications
stipulate that a given attribute (or list of attributes) is to be computed using a given
subprogram or entry with given values as input; the inputs can include the values of
other attributes in the tuple or other identifiable values. If a dependency specification
is given for an attribute then that attribute can only take on values in accordance
with that specification. Computed attributes provide for derived objects; in conjunc-
tion with computational dependency specifications they enable the representation of
derivation relationships and allow for automation of the derivation process.
Constraints are predicates that characterize the state of a relation. They are
expressed in terms of relational predicates, which include conditional and quantified
forms. They can apply both to attributes and tuples, and they can be expressed in
terms of other attributes and tuples in the same or other relations. The constraints
must be true of all tuples that are retrievable from a relation; APPL/A constraints
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are conventional in this way. Planned extensions to the language include constraint-
like expressions that are to be regarded as goals to be satisfied eventually rather than
as immediate restrictions.

4.7 Iteration over Relations
Tuples are retrieved from relations using an iterative construct of the form

for t in R where P loop
S;
end loop;

where R is a relation, ¢ is a loop variable of the tuple type for R, P is a predicate used
to select values from R for ¢, and S is a statement that may operate on ¢. Each tuple
in R that satisfies P is assigned to ¢ in turn. This iteration is implemented in terms
of repeated calls to the find and selected entries for R. Calls to the find entry effect
the retrieval of some subset of the tuples in R; upon the conclusion of iteration (if it
is not interrupted) the retrieved tuples must comprise a superset of the tuples in R
that satisfy P. For each retrieved tuple that actually satisfies P the selected entry
is called with that tuple as a parameter and S is executed. The selected entry can

thus be used by the relation to invoke processes in response to the selective retrieval
of a tuple.

4.8 “Upon” Statements

The upon statement provides a reactive mechanism that allows a process to respond
independently and asynchronously to operations on relations. The upon statement
has the general form

upon E invoke
S;
end upon;

where S is a statement and F is an “invocation event.” Invocation events are entry
calls into relations. Thus, an insert call into relation R generates a insert event .
Each relation, task, subprogram, or package that includes an upon statement
has associated with it a conceptual event queve. This event queue stores records of
information about relation entry calls that are referenced as invocation events in the
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upon statements of that program unit. When an invocation event occurs a record
for it is enqueued in the event queue of each unit that has cited that invocation
condition. These records are queued in the order in which the invocation events
occur; the records contain the identity of the corresponding relation entry and the
values of the actual parameters with which it was called.

When control in a process reaches an upon statement it may proceed only if
the event queue has at its head a record for the corresponding invocation event. If
this condition is not satisfied then control is logically suspended at that point, until
the invocation event occurs, if ever. If and when the above condition is satisfied,
the record is dequeued from the event queue, the appropriate values are assigned to
the formal parameters of the invocation event, and execution of the upon statement
proceeds.

During execution a given invocation event is considered to occur when a call to
the corresponding relation entry returns successfully, that is, without propagating
an exception. Upon completion, the event is appended to all event queues that are
interested in it. Thus, the occurrence of an invocation event does not synchronously
trigger any upon statements that reference it; no upon statement is triggered if it is
not ready to execute (i.e., available to examine it event queue).

Upon statements can be used wherever accept statements can be used, in par-
ticular in select statements, so it is possible to execute upon statements selectively
and conditionally.

5 Status

A formal syntax and semantics have been defined for APPL/A, as have rules for
the translation of APPL/A constructs into standard Ada. These have been evolv-
ing gradually as we gain experience with the language. APPL/A has been used to
program REBUS, a system which supports the specification of software requirements
in a functional hierarchy. REBUS maintains data about requirements in APPL/A
relations; the relation specifications and bodies comprise about 2700 lines of code, ex-
clusive of runtime support systems and storage system interfaces. APPL/A is being
used to extend REBUS to include features based on RSL/REVS (3] and to construct
a design support system based on the Rational Design Methodolgy of Parnas[31].

The use of APPL/A in REBUS has helped us to refine and reenforce both APPL/A
and the principles on which it is based.
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with wc; - represents UNIX wc tool
with documents; - another relation

relation Word_Count is
- Relates input and output of the UNIX wc tool
type wc_tuple is tuple
text: in text_name;
lines, words, characters: out natural;
end tuple;
entries
insert(text: in text_name);
delete(select text: in boolean; given_text: in text_name);
find(first: in boolean;
select_text: in boolean; given_text: in text_name;
select lines: in boolean; given_ lines: in natural;
select_words: in boolean; given_words: in natural;
select characters: in boolean; given_characters: in natural;
t: out wc_tuple;
found: out boolean);
selected(t: in wc_tuple);
dependencies
text determines lines, words, characters
by wc(text, lines, words, characters);
constraints
— each tuple is unique
all t1 in word_count satisfy
no t2 in word_count satisfies
tl.text = t2.text and t1 /= t2;
end no;
end all;
— each text occurs in relation “documents”
all t1 in word_count satisfy
some t2 in documents satisfies
tl.text = t2.text
end some;
end all;
End Word_Count;
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» The relational model proved useful for defining abstract types for requirements
and simplified extension of those types.

o Particular relationships modeled included logical containment, functional de-
composition, derivations between requirements elements, and other associations
based on requirements semantics.

» Both intra- and inter-relational constraints were generally useful.

o The activity and reactivity of relations was helpful in maintaining explicit con-
straints and in propagating updates to the requirements; this simplified the
application-level code, which was effectively relieved of these responsibilities.

® The separation of relation specifications from bodies enabled application-level
code to be developed independently of the underlying storage system; in REBUS
both Ada direct I/O files and the Cactis [21] semantic database were used for
storage.

o The opportunity to regard many predicates on requirements specifications as
goals to be satisfied eventually rather than as constraints to be met immediately
strengthened our belief that the toleration and management of inconsistency is
essential.

Ongoing research includes the development of additional software systems based
on APPL/A, particularly systems for requirements specification, design, testplan gen-
eration, and maintenance. This will enable us to continue to evaluate APPL/A and
the concepts behind it. As the ASPEN principles evolve and the APPL/A mech-
anisms are updated we expect to gain additional insights into the requirements for
software object management systems.

6 Related Work

APPL/A is being developed as part of an ongoing program of software environments
research at the University of Colorado. The earliest effort, TOOLPACK [30], focused
on collections of tools. Within TOOLPACK the Odin system [9] explored the idea
of an object base as the integrating element of an environment. Odin also supported
a system of inferencing over derivation relations. In conjunction with the Arcadia
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project [40], APPL/A is being developed to extend the ideas of Odin to support
general, programmable relations over objects in an environment.

APPL/A is not the first system to propose some form of relation as a structur-
ing concept. In [8,24,33] relations are proposed for the storage of complex software
structures such as source code, parse trees, and execution states. These systems rely
on traditional relational databases (such as INGRES [38]); as a consequence their
performance is prohibitively slow.

POSTGRES [36], is an ambitious attempt to extend the relational data model
to support software environments. Specifically, POSTGRES extends INGRES with
domains over abstract data objects and procedures and supports both forward and
backward inferencing. Consequently, POSTGRES offers many of the capabilities of
APPL/A, and since POSTGRES is based on INGRES, it is a more mature system.
The major flaw in POSTGRES is its relative inflexibility. While individual domain
values may be programmable, the implementation of a whole relation cannot be
specified. In addition, the relations themselves are not considered objects, and so
meta-relations over existing relations cannot be constructed.

Increasingly research environments are using various kinds of object-oriented mod-
els to overcome the limitations of relational databases [15,16,22,35]. APPL/A can be
considered such a system since it explicitly uses objects as the domains for its rela-
tions.

The Encore system [42] is one example of an object-oriented approach. Encore
provides an object-oriented database language for a database in which the objects
are described by types with operations, properties, and type inheritance, much like
Smalltalk [15]. Encore has no built-in notion of relation; rather it must be built up
from more primitive concepts. Also, programmability is associated with types rather
than with relations.

Other systems that can be considered in this category are DAMOKLES[12],
CAIS[1], NuMIL[26]. These offer some interesting features but lack the combina-
tion of high-level relations, strong typing, and programmability that is important in
APPL/A.

PS-ALGOL [4] represents a third modelling approach. It uses a persistent heap
for object storage and uses the language typing system for persistent objects. This
allows it to closely control some aspects of the storage of data, but this model is less
flexible than the relational model for queries.

Horwitz [19] has proposed an approach to relations that is very similar to APPL/A.
She proposes a relational interface to existing data structures, specifically software
data, and shows that a properly defined interface allows for certain classes of query
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optimization over such interfaces. The basic operations of APPL/A relations are
comparable to those she recommends, but with modifications to handle iterators and
the upon operator.

APS5 [11] is closest to APPL/A in spirit. It too has programmable relations as its
primary modelling concept. These relations can support constraints and inferencing
and AP5 has a very powerful query language. AP5 is embedded in Lisp as opposed
to Ada.

APPL/A has some points in common with Adaplex [35]. Adaplex attempts to em-
bed an object oriented database into Ada by extending the Ada language. Adaplex
uses types with attributes as opposed to the n-ary relations favored by APPL/A.
Adaplex also does not allow close control over implementation of its modelling struc-
tures.

Finally, the notion of using programming languages such as APPL/A to express
software relations fits nicely with the notion of process programming [29]. Process
programming suggests that the way in which software is developed and maintained
can be captured as software itself, and that environments can support and effect the
development and maintenance of software by interpreting software process programs.
Clearly such software process programs must operate on software objects, and must
therefore incorporate specifications of the type systems used to structure environ-
ment object stores. Going further, however, process programs must also embody and
implement the relations among these objects. Thus process programs must effect
software object relation management. From that perspective, a relation management
language such as APPL/A is a component of a process programming language.
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